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Abstract

This study describes a methodology based on a local failure model to predict the strong e�ects of constraint vari-

ations on (macroscopic) cleavage fracture toughness. We limit our focus to a stress-controlled, cleavage mechanism for

material failure and adopt the Weibull stress (rw) as the local parameter to describe crack-tip conditions. A central

feature of the present investigation involves the interpretation of rw as a macroscopic crack driving force and the

implications of its use in assessments of brittle fracture behavior. When implemented in a ®nite element code, the

computational model predicts the evolution of Weibull stress with crack-tip stress triaxiality and stable crack growth.

The small-scale yielding analyses under varying levels of T-stress exhibit the essential features of the micromechanics

approach in correlating macroscopic fracture toughness with constraint variations and ductile tearing. Ó 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Conventional fracture mechanics methodologies to assess unstable cracking behavior (cleavage fracture)
of di�erent cracked bodies (i.e., laboratory specimens and engineering structures) rely on the similarity of
their respective crack-tip stress and deformation ®elds. Under small scale yielding (SSY) conditions, a single
parameter, such as the linear elastic stress intensity factor, K, and the J-integral (or, equivalently, the crack-
tip opening displacement, CTOD or d), uniquely scales the elastic±plastic near-tip ®elds. In the present
context, SSY is meant to pertain to loading conditions for which near-tip plasticity is well contained and
controlled by the elastic ®elds for an in®nite crack. To the extent that such one-parameter singular ®elds
dominate over microstructurally signi®cant size scales (i.e., the fracture process zone (FPZ) of a few
CTODs ahead of a macroscopic crack), the parameters K and J (d) fully describe the local conditions
leading to unstable (cleavage) failure (see, e.g., the review by Hutchinson, 1983).
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However, fracture testing of ferritic structural steels in the ductile-to-brittle (DBT) transition region
consistently reveals a signi®cant e�ect of specimen geometry and loading mode (bending vs. tension) in
cleavage toughness values as measured by the critical parameters KIc, Jc or dc, (see Sorem et al., 1991; De
Castro et al., 1979 for illustrative data). These studies show signi®cant elevations in the elastic±plastic
fracture toughness for shallow crack SE(B) specimens and tension geometries of ferritic steels tested in the
transition region, where transgranular cleavage triggers macroscopic fracture. At increased loads in a ®nite
body, such as a cracked specimen or structure, the initially strong SSY ®elds gradually change to ®elds
under large scale yielding (LSY) as crack-tip plastic zones increasingly merge with the global bending
plasticity on the nearby traction free boundaries. This phenomenon, often termed loss of constraint, con-
tributes to the apparent increased toughness of shallow cracked and tension loaded geometries observed in
fracture testing. Once SSY conditions no longer apply, larger J-values in the ®nite body are necessary to
generate a highly stressed region ahead of crack tip su�cient to trigger cleavage. These features have
enormous practical implications in defect assessment procedures, particularly repair decisions and life
extension programs of in-service structures as well as structural design speci®cations.

These limitations of single parameter fracture mechanics approaches to characterize the fracture be-
havior of fully yielded crack geometries motivated the development of micromechanics models based upon
a probabilistic interpretation of the fracture process (most often referred to as local approaches). Attention
has been primarily focused on probabilistic models incorporating weakest link statistics to describe material
failure caused by stress-controlled transgranular cleavage. By coupling macroscopic measures of fracture
toughness (J, CTOD) with micromechanics models for material failure ahead of the crack tip, researchers
endeavour to predict, rather than correlate, constraint e�ects on fracture toughness. The seminal work of
Beremin (1983) provides the basis for establishing a relationship between the microregime of fracture and
macroscopic crack driving forces (such as the J-integral) by introducing the Weibull stress (rw) as a
probabilistic fracture parameter. Retaining contact with conventional approaches, this fracture parameter
conveniently characterizes macroscopic fracture behavior for a wide range of loading conditions and crack
con®gurations.

The central feature in the above methodologies adopts the simple axiom that unstable crack propagation
(cleavage) occurs at a critical value of the Weibull stress; under increased remote loading (as measured by
J ), di�erences in evolution of the Weibull stress re¯ect the potentially strong variations of near-tip stress
®elds. This also permits a convenient treatment of ductile tearing e�ects on macroscopic fracture toughness.
For materials having su�cient resistance to cleavage fracture in the mid transition region, intense plastic
strains coupled with high stresses directly ahead of the blunting crack tip generally produce ductile tearing
prior to unstable crack propagation by cleavage. This ``competition'' between local failure by cleavage and
ductile mechanisms controls the cleavage fracture resistance of ferritic steels in the DBT regime. Ductile
extension of the crack front alters the stress histories (relative to a stationary crack) in the material ahead of
the blunting region and increases the volume of the FPZ (Varias and Shih, 1993; Dodds et al., 1993). Since
evaluation of the Weibull stress occurs over a relevant (volume) of near-tip material termed the process
zone, this approach re¯ects ductile crack growth e�ects on the local stress±strain ®elds that drive the mi-
croscale fracture. The Weibull stress then describes both the e�ects of stressed volume and the potentially
strong changes in the character of the near-tip stress ®elds due to constraint loss and ductile crack ex-
tension.

The plan of the paper is as follows. In the next section, we present an overview of local (micromechanics)
modeling of cleavage fracture incorporating statistics of microcracks. The approach builds upon weakest
link theory and introduces the Weibull stress (rw) as a probabilistic fracture parameter. Numerical methods
and geometric models applicable for SSY analyses are then described with emphasis on realistic modeling
of ductile crack growth using the computational cell methodology. A simpli®ed form of the Gurson±
Tvergaard (GT) (Gurson; Tvergaard, 1990) constitutive model for dilatant plasticity serves to predict
microscopic void growth within a layer of cells de®ned over the crack plane. Our SSY analyses provide key
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results for stationary and growing cracks to assess e�ects of constraint and ductile tearing on cleavage
fracture using a local fracture parameter. The paper also explores development of a toughness scaling
methodology based upon Weibull stress trajectories for di�erent constraint conditions which enables as-
sessment of constraint loss in conventional fracture specimens. The present study builds upon previous
work based on a local approach for fracture by Ruggieri and Dodds (1996a) and extends their analyses to
cover a wider range of parametric values and materials options. Both works, when taken together, provide
a fairly extensive body of results against which the robustness of the local fracture parameter (rw) can be
weighed.

2. Local modeling of cleavage fracture incorporating statistics

2.1. Probabilistic fracture parameter: the Weibull stress

Limiting attention to the speci®c micromechanism of transgranular cleavage, we consider an arbitrarily
stressed body where a macroscopic crack lies in a material containing randomly distributed ¯aws as il-
lustrated in Fig. 1. FPZ ahead of the crack tip is de®ned as the highly stressed region where the local
operative mechanism for cleavage takes place; this region contains the potential sites for cleavage cracking.
For the purpose of developing a probabilistic model for brittle fracture, we divide the FPZ ahead of crack
tip in a large number of unit volumes statistically independent; each unit volume contains a substantially
number of statistically independent micro¯aws uniformly distributed.

The statistical nature of brittle fracture underlies a simpli®ed treatment for unstable crack propagation
of the con®guration represented in Fig. 1(a). Based upon probability theory and invoking the Poisson
postulates (see, e.g., Feller, 1957), the elemental failure probability, dP, is related to the distribution of the
largest ¯aw in a reference volume of the material, which can be expressed as

dP � dV
Z 1

ac

g�a�da �1�

where g�a�da de®nes the average number of microcracks per unit volume having sizes between a and
a� da. Here, a common assumption adopts an asymptotic distribution for the microcrack density in the
form g�a� � �1=V0��r0=a�r, where r and r0 are parameters of the distribution and V0 denotes a reference
volume (Freudenthal, 1968; Evans and Langdon, 1976). The implicit distribution of fracture stress can be

Fig. 1. (a) FPZ ahead a macroscopic crack containing randomly distributed ¯aws; (b) unit volume ahead of crack tip subjected to a

multiaxial stress state.
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made explicit by introducing the dependence between the critical microcrack size, ac, and stress in the form
ac � �K2=Y r2�, where Y represents the specimen dependent geometry factor and r denotes a tensile
(opening) stress acting on the microcrack plane. A simple manipulation of this expression on the basis of
weakest link statistics provides the basis for establishing a relationship between the microregime of fracture
and macroscopic crack driving forces (such as the J-integral) for the fracture stress of a cracked solid as
(Beremin, 1983; Ruggieri and Dodds, 1996a, b; 1997; 1998)

F �r1� � 1ÿ exp

�
ÿ 1

V0

Z
X

r1

ru

� �m

dX

�
; �2�

where X denotes the volume of the (near-tip) FPZ, V0 is a reference volume and r1 is the maximum
principal stress acting on material points inside the FPZ. Ruggieri and Dodds (1996a, b; 1997, 1998) de®ne
the FPZ as the loci r1 P kr0, with k � 2. Alternative de®nitions for the FPZ include the plastic region
ahead of the macroscopic crack re P r0 where re denotes the equivalent Mises stress (Beremin, 1983;
Mudry, 1987).

Following Beremin (1983), the Weibull stress is de®ned as the stress integral

rw � 1

V0

Z
X

rm
1 dX

� �1=m

: �3�

which permits rewriting the stress integral of Eq. (2) in the form

F �rw� � 1ÿ exp

�
ÿ rw

ru

� �m�
: �4�

This expression de®nes a two-parameter Weibull distribution (Weibull, 1939) for the random variable rw.
Parameters m and ru appearing in Eq. (4) denote the Weibull modulus and the scale parameter of the
Weibull distribution.

2.2. Generalization of the Weibull stress for a growing crack

The Weibull stress describes local conditions leading to unstable (cleavage) failure and appears, at least
as a ®rst approximation, to remain applicable during small amounts of ductile crack extension. Highly
localized, non-planar crack extension and void growth at the larger inclusions, both of which occur over a
scale of K dIc (the CTOD at onset of crack growth initiation), should not alter the material properties m
and ru over the much larger process zone relevant for cleavage initiation. Further, small amounts of ductile
crack growth modify the stress history of material points within the process zone for cleavage fracture
which a�ects directly the evolution of Weibull stress. A detailed discussion of the approach adopted here
for generating the evolution of the Weibull stress with J (or equivalently CTOD) for a growing crack is
given by Ruggieri and Dodds (1996a).

Fig. 2 illustrates the development of the active FPZ (recall that the FPZ is de®ned as the loci where
r1 P kr0 with k � 2) given by a snapshot of the stress ®eld ahead of the growing crack. Points on such a
contour all lie within the forward sector jhj6p=2. The envelope of all material points for which r1 P kr0

during the history of growth de®nes an alternative, cumulative process zone. Consequently, the 3-D form of
the Weibull stress for a growing crack becomes simply

rw � 1

V0

Z
X�

rm
1 dX�

� �1=m

; �5�

where X� denotes the active volume of the FPZ, r1 P kr0, which moves forward with the advancing tip. The
proposed generalization of rw to include ductile tearing maintains the relative simplicity of computa-
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tions while, at the same time, fully incorporating the e�ects of alterations in the stress ®eld ahead of the
crack tip.

3. Computational procedures and geometric models

3.1. Overview of crack growth modeling using computational cells

The computational cell methodology proposed by Xia and Shih (1995a) (Xia et al., 1995b) provides a
model for ductile crack extension that includes a realistic void growth mechanism, and a microstructural
length-scale physically coupled to the size of the FPZ. Void growth remains con®ned to a layer of material
symmetrically located about the crack plane, as illustrated in Fig. 3(a), and having thickness D, where D is
associated with the mean spacing of the larger, void initiating inclusions. This layer consists of cubical cell
elements with dimension D on each side; each cell contains a cavity of initial volume fraction f0 (the initial
void volume divided by cell volume). As a further simpli®cation, the void nucleates from an inclusion of
relative size f0 immediately upon loading. Progressive void growth and subsequent macroscopic material
softening in each cell are described with the Gurson±Tvergaard (GT) constitutive model for dilatant
plasticity (Gurson, 1977; Tvergaard, 1990). Fig. 3(b) shows the typical, plane strain ®nite element repre-
sentation of the computational cell model where symmetry about the crack plane requires elements of size
D=2. Material outside the computational cells, the ``background'' material, follows a conventional J2 ¯ow
theory of plasticity and remains undamaged by void growth in the cells.

When f in the cell incident on the current crack tip reaches a critical value, fE (which typically has a
value of 0.15±0.25), the computational procedure removes the cell thereby advancing the crack tip in
discrete increments of the cell size. The ®nal stage of void linkup with the macroscopic crack front occurs by
reducing the remaining stresses to zero in a prescribed manner. Tvergaard (1990) refers to this process as
the element extinction or vanish technique. This cell extinction process creates new traction free surfaces in
a controlled manner and also eliminates numerical di�culties in the ®nite strain computations. Ruggieri
and Dodds (1996c) provide further details of the computational implementation of the cell extinction
scheme used in the present numerical analyses.

Fig. 3. Modeling of ductile tearing using computational cells.

Fig. 2. Schematic representation for the evolution of the FPZ for a growing crack. The crack has advanced from a � a0 to a � a0 � Da.
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Material properties required for this methodology include: for the background material Young's
modulus (E ), PoissonÕs ratio �m�, yield stress �r0� and hardening exponent (n) or the actual measured stress±
strain curve; and for the computational cells: D and f0 (and of much less signi®cance fE). The background
material and the matrix material of the cells generally have identical ¯ow properties. Using an experimental
J-Da curve obtained from a conventional SE(B) or C(T ) specimen, a series of ®nite element analyses of the
specimen are conducted to calibrate values for the cell parameters D and f0 which bring the predicted J-Da
curve into agreement with experiment. Experience with plane±strain ®nite element analyses of SE(B) and
C(T ) specimens to estimate D and f0 for common structural and pressure vessel steels suggests values of 50±
200 lm for D, 0.001±0.005 for f0, with fE typically 0.15±0.20. Once determined in this manner using a
speci®c experimental R-curve, D and f0 become ``material'' parameters and remain ®xed in analyses of all
other specimen geometries for the same material.

3.2. Finite element models

The modi®ed boundary layer (MBL) model (Larsson and Carlsson, 1973; Rice, 1974) simpli®es the
generation of numerical solutions for stationary and growing cracks under well-de®ned SSY conditions
with varying levels of constraint. Fig. 4 shows the plane±strain ®nite element model for an in®nite domain,
single-ended crack problem; Mode I loading of the far ®eld permits analysis using one-half of the domain as
shown. With the plastic region limited to a small fraction of the domain radius, Rp < R=20, the general form
of the asymptotic crack-tip stress ®elds well outside the plastic region is given by Williams (1957)

rij � KI�������
2pr
p fij�h� � T d1id1j; �6�

where K is the stress intensity factor, fij�h� de®ne the angular variations of in-plane stress components, and
the non-singular term T represents a tension (or compression) stress parallel to the crack. Numerical so-
lutions for di�erent levels of T=r0 are generated by imposing displacements of the elastic, Mode I singular
®eld on the outer circular boundary �r � R� which encloses the crack

u�R; h� � KI

1� m
E

������
R
2p

r
cos

h
2

� �
�3ÿ 4mÿ cosh� � T

1ÿ m2

E
Rcosh; �7�

v�R; h� � KI

1� m
E

������
R
2p

r
sin

h
2

� �
�3ÿ 4mÿ cosh� � T

m�1� m�
E

R sinh: �8�

Fig. 4. SSY model with (K, T ) ®elds imposed on boundary.
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Stationary crack analyses employ a conventional mesh con®guration having a focused ring of elements
surrounding the crack front with a small key-hole at the crack tip; the radius of the key-hole, .0, is 2.5 lm
(0.0025 mm) with R=D � 106. This SSY model has one thickness layer of 2065 8-node, 3-D elements with
plane±strain constraints imposed �w � 0� on the nodes. Evaluation of the Weibull stress requires inte-
gration over the process zone, including the region as r! 0. For crack growth analyses, the model has a
single layer of 120 computational cells along the crack plane, with the plastic behavior of each cell as
described in Section 3.1. These computational cells have a ®xed size of D=2� D=2, with D � 200 lm and
R=D � 112500. Fig. 3(b) shows the initial crack-tip geometry for the growth analyses.

The SSY model has a small initial root radius at the crack front (blunt tip) which provides two numerical
bene®ts: (1) it accelerates convergence of the ®nite±strain plasticity algorithms during the initial stage of
blunting, and (2) it minimizes numerical problems during computation of the Weibull stress over material
incident on the crack tip. To limit e�ects of the initial root radius on Weibull stress calculations, the CTOD
�d� is required to equal four times the initial radius �q0� at a deformation consistent with r0b=J � 250,
where r0 is the reference yield stress (see Section 3.3) and b is the remaining crack ligament. This condition
requires q0 � 2:5 lm for SSY model and ¯ow properties considered in this work. A series of SSY analyses
containing a range of initial root radii con®rm that the Weibull stress trajectories after reaching steady state
conditions become independent of the initial root radius for d=q0 > 4. However, prior to reaching steady
state conditions, the initial root radius does a�ect the Weibull stress as the near-tip stress ®elds are depedent
upon the blunt tip radius and local geometries (such as, for example, mesh details). We do not consider this
an important issue in the present study since the load levels prior to reaching steady state conditions are
very small and are not very relevant in fracture mechanics analyses for the material properties considered in
the present work. For example, cleavage fracture toughness levels for typical structural steels under es-
sentially SSY conditions may range from 60 to 150 MPa

����
m
p

; such values are already within the steady state
region (therefore independent of the initial root radius) for the MBL model employed.

Section 6 outlines a toughness scaling methodology based upon the Weibull stress to assess e�ects of
constraint loss in conventional fracture specimens. The numerical solutions employ the SSY model de-
scribed above and 3-D ®nite element analyses for a plane-side deep notch �a=W � 0:5� SE(B) specimen with
B � 25 mm [1(T)] and conventional geometry �W =B � 2�. Here, a denotes the crack length and W is the
specimen width. To maintain consistency with the ®nite element models for the SSY analyses, the SE(B)
specimen has similar level of mesh re®nement at the crack tip as the SSY model for stationary crack. The
quarter-symmetric, 3-D models for the SE(B) specimen has 18500 nodes and 16 000 elements with 14
variable thickness layers de®ned over the half-thickness (B=2); the thickest layer is de®ned at centerplane
�x3 � 0� with thinner layers de®ned near the free surface �x3 � B=2� to accommodate strong thickness
variations in the stress distribution.

3.3. Constitutive models

To describe the evolution of void growth and associated macroscopic material softening in the com-
putational cells, we adopt the Gurson (1977) and Tvergaard (1990) potential function (g) for plastic ¯ow in
porous media

g�re; rm; r; f � � re

r

� �2

� 2q1f cosh
3q2rm

2r

� �
ÿ 1
ÿ � q3f 2

� � 0; �9�

where re denotes the e�ective Mises (macroscopic) stress, rm is the mean (macroscopic) stress, r is the
current ¯ow stress of the cell matrix material and f de®nes the current void fraction. Under multiaxial stress
states, re � �3SijSij=2�1=2

where Sij denotes the deviatoric components of Cauchy stress. Factors q1, q2 and
q3 introduced by Tvergaard improve the model predictions for periodic arrays of cylindrical and spherical
voids; here we use q1 � 1:25, q2 � 1:0 and q3 � q2

1.
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The background material outside of the computational cells follows a J2 ¯ow theory with the Mises
plastic potential obtained by setting f � 0 in Eq. (9). The uniaxial true stress-logarithmic strain response
for both the background and cell matrix materials follows a simple power-hardening model

�

�0

� r
r0

; �6 �0;

�

�0

� r
r0

� �n

; � > �0;

�10�

where r0 and �0 are the reference (yield) stress and strain, and n is the strain hardening exponent. Sections 4
and 5 describe numerical solutions for the SSY boundary-layer model with non-zero T-stress using ma-
terials with n � 5 (high hardening) with E=r0 � 800, n � 10 (moderate hardening) with E=r0 � 500 and
n � 20 (low hardening) with E=r0 � 300; each with m � 0:3. The stress±strain response for these materials is
shown in Fig. 5. These properties characterize a relatively wide range of plastic behavior for structural steels
while, at the same time, re¯ecting the upward trend in yield stress with the decrease in strain hardening
exponent characteristic of ferritic steels.

3.4. Finite element procedures

Finite element solutions are generated using the research code WARP3D (Koppenhoefer et al., 1994).
Key features of the code employed in this work include: (1) the GT and Mises constitutive models im-
plemented in a ®nite±strain setting, (2) cell extinction using a traction±separation model, (3) automatic load
step si�zing based on the rate of damage accumulation, and (4) evaluation of the J-integral using a domain
integral procedure. Fracture models are constructed with 3-D, 8-node hexahedral elements. Use of the so-
called B formulation (Hughes, 1980) precludes mesh lock-ups that arise as the deformation progresses into
fully plastic, incompressible modes.

The local value of the mechanical energy release rate at a point along a crack front is given by Moran
and Shih (1987)

J � lim
C!0

Z
C

Wn1

�
ÿ Pji

oui

oX1

nj

�
dC; �11�

Fig. 5. Uniaxial true stress±logarithmic strain response of materials employed in the analyses using a power-hardening model.
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where C denotes a contour de®ned in a plane normal to the front on the undeformed con®guration �t � 0�
beginning at the bottom crack face and ending on the top face, nj is the outward normal to C, W denotes
the stress±work density per unit of undeformed volume, Pij and ui are Cartesian components of (unsym-
metric) Piola±Kircho� stress and displacement in the crack front coordinate system. Our ®nite element
computations employ a domain integral procedure (Moran and Shih, 1987) for numerical evaluation of Eq.
(11). A thickness average value for J is computed over domains de®ned outside material having the highly
non-proportional histories of the near-tip ®elds and thus retains a strong domain (path) independence.
Such J-values provide a convenient parameter to characterize the average intensity of far ®eld loading on
the crack front.

4. Measure of constraint using SSY ®elds

A convenient description for the diverse range of crack-tip ®elds (which depends on crack geometry and
loading mode) can be motivated by considering the progression of plastic states under increased remote
loading for a cracked body. At low loads, the near-tip stresses and deformations evolve according to a self-
similar ®eld characterized by a high level of stress triaxiality. As plastic ¯ow progresses from well-contained
yielding to LSY, the near-tip stresses gradually relax below the levels for high triaxiality stress states (see,
for example, the early numerical analyses of McMeeking and Parks (1979), and Shih and German, 1981).
This evolving level of stress triaxiality ahead of the crack front under increased remote loading is referred to
as constraint.

The approach to quantify the level of constraint in a ®nite cracked body utilizes full ``reference'' crack-
tip ®elds constructed for SSY conditions. The crack-tip ®elds computed for the ®nite body are then
compared to SSY ®elds to de®ne relative constraint di�erences. Finite element analyses of the MBL
problem enable construction of SSY ®elds for general material response and admit the option to include
®nite±strain (blunting) e�ects at the crack tip. The plane±strain element mesh represents a single-ended
crack in an in®nite body where speci®ed values for KI and T uniquely de®ne the linear-elastic remote ®eld
enclosing a vanishingly small plastic zone at the tip relative to other geometric dimensions such as crack size
(see Fig. 4). Incremental plasticity theory, viscoplasticity and arbitrary material ¯ow properties, for ex-
ample, introduce no di�culties.

Fig. 6(a)±(d) provides key results to verify the existence of such ®elds for well-contained, limited scale
plasticity under varying levels of applied T-stress for the material with n � 10�E=r0 � 500�. In the plots,
distances all scale with �KI=r0�2 whereas the opening stresses are normalized by r0. At very low remote
loading for all levels of applied T-stress �KI � 20, 40 MPa

����
m
p �, the near-tip stresses increase as the process

of crack-tip blunting takes place. After the notch root radius increases to several times the initial radius q, a
steady state solution develops so that the near-tip ®elds under SSY conditions are simply a continuous series
of self-similar states. Additional results for analyses conducted for materials with n � 5 �E=r0 � 800� and
n � 20 �E=r0 � 300� display essentially similar trends. Here, the crack-tip ®elds for these materials collapse
onto a single normalized curve once su�cient crack-tip blunting occurs.

These plane±strain ®elds thus de®ne a family of reference ®elds for stationary cracks where speci®ed
values for KI and T uniquely de®ne the elastic±plastic ®elds along the crack tip when a vanishingly small
plastic zone encloses the tip. The di�erences between the actual ®nite±body ®eld and those of the com-
parison SSY ®eld (having the applicable elastic T-stress), quantify the extent of LSY e�ects. Despite the
apparent small di�erences between these ®elds (di�erences between high and low constraint ®elds are of the
order of �10%), the implications for fracture are enormous as demonstrated by experimental observations.
Indeed, factors exceeding 3±5 are often observed in toughness values KIc, Jc or dc for high constraint and
low constraint fracture specimens. This aspect will become more evident in Section 5.
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In the present context pertaining to a local approach to cleavage fracture, the SSY reference solutions
provide the necessary ®elds to compute the evolution of the Weibull stress with KI and T as well as ductile
tearing. For a ®xed set of material dependent constants in the microscale fracture criterion, these rela-
tionships constitute the SSY reference conditions to assess the strong e�ects of constraint and stable crack
growth on fracture resistance.

5. Constraint and ductile tearing e�ects on fracture

This section provides key results for the SSY analyses under varying levels of T-stress used to assess
e�ects of crack-tip constraint and ductile tearing on fracture resistance. The presentation begins with de-
scriptions for the evolution of Weibull stress with crack-tip stress triaxiality and then turns to e�ects of
crack growth on Weibull stress trajectories. A central feature of the present investigation involves the in-
terpretation of rw as a macroscopic crack driving force and the implications of its use in assessments of
brittle fracture behavior. For convenience, the plane±strain SSY analyses utilize ®nite element models with
a reference unit thickness, B � 1 mm, throughout.

5.1. The Weibull stress for stationary cracks

SSY solutions with varying levels of applied T-stress are generated for power±law hardening materials
having three levels of strain hardening: n � 5 �E=r0 � 300�, n � 10 �E=r0 � 500� and n � 20 �E=r0 � 800�.
In each analysis, the full value of T-stress is imposed ®rst (which causes no yielding), followed by the KI ®eld
imposed in an incremental manner. In evaluating the Weibull stress, Eq. (3), under increasing KI levels, the
value of the Weibull modulus is adopted as m � 10 for the high strain hardening material �n � 5� and
m � 20 for the moderate to low-hardening material (n � 10 and 20). In particular, values for m � 20

Fig. 6. Near-tip opening stresses under SSY conditions for n � 10, E=r0 � 500 and varying levels of applied T-series. Plots are gen-

erated for load levels KI � 20, 40, 60, 80, 100, 125 and 150 MPa
����
m
p

.
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characterize the distribution of Weibull stress at cleavage fracture for a nuclear pressure vessel steel (ASTM
A508) (Beremin, 1983). For the analyses of the moderate strain hardening material �n � 10� with T=r0 � 0,
two other values of the Weibull modulus are also considered: m � 10 and 30. This range of parameter
covers most m-values for structural steels reported by Gao et al. (1998) and Ruggieri et al. (in press).

Fig. 7(a)±(c) shows the variation of Weibull stress under increasing deformation for the three levels of
hardening n � 5, 10, 20 and for values of T-stress ranging from ÿ0:756 T=r06 0:5. The T-stress values
adopted in our analyses are consistent with the ranges de®ned by SSY analyses (see, e.g., Parks, 1992). For
T=r0 � 0 and ®xed strain hardening �n � 10�, Fig. 7(d) shows the variation of Weibull stress with in-
creasing deformation for m � 10, 20 and 30. In these plots, K2

I =�r2
0R� describes the far-®eld loading with the

Weibull stress normalized by the yield stress, r0. For each material, the evolution of rw as deformation
progresses depends markedly on the level of crack-tip stress triaxiality as measured by T=r0. The Weibull
stress trajectories for positive values of T=r0 are consistently above the corresponding trajectories for
T=r0 � 0. Conversely, the evolutions of rw for negative values of T =r0 remain below the Weibull stress
curve for T=r0 � 0. Since the Weibull stress and the far-®eld loading in each plot are normalized by the
material's yield stress, r0, direct comparison of the fracture resistance behavior for the materials is
somewhat di�cult. However, these results demonstrate clearly the strong e�ect of constraint loss
�T=r0 < 0� on the levels of rw for all materials, particularly for moderate to low hardening materials
(n� 10±20). The e�ects of T=r0 on rw observed here are entirely consistent with the J±Q characterization of
SSY stress ®elds described by O'Dowd and Shih (1991, 1992). The lower rw-values with T=r0 < 0 follow
from the reduced stress triaxiality levels ahead of the crack tip, as described by negative Q-values.

A central feature of the above results is that the failure probability for the stressed cracked body at ®xed
values of T=r0 monotonically increases for increased rw-values. This conclusion derives directly from the
coupling between the Weibull stress and loading as implied by Eq. (3) in conjunction with Eq. (4). The
results displayed by these plots also support observations about the strong e�ect of small di�erences in
near-tip stresses for high and low constraint con®gurations on cleavage fracture behavior made previously.

Fig. 7. Stationary crack analysis under SSY conditions and varying hardening properties.
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In other words, larger K-values in the ®nite body are necessary to increase the crack-tip driving force, as
expressed by rw in Fig. 7, such as local conditions to trigger cleavage fracture can be reached. This con-
clusion applies for other loading measures such as J and CTOD.

Another important feature of these results is the similar shape of rw-trajectories with T =r0 after the early
stages of loading; here, the magnitude of Weibull stress all scale with T=r0 in accordance with rw � bmK4=m

I

(Mudry, 1987), where the proportionality constant, bm, depends on m as exhibited by the plots displayed in
Fig. 7(d). Because parameter T=r0 scales the near-tip stresses relative to the reference ®eld �T =r0 � 0�, as
presented in Fig. 6, it also a�ects the magnitude of the Weibull stress at rates that decrease (increase) with
reduced (increased) stress triaxiality. Consequently, the evolution of Weibull stress with remote loading can
be generalized as rw � bT ;mK4=m

I , where the proportionality constant, bT ;m, depends on m and T=r0.

5.2. E�ects of ductile tearing on the Weibull stress

The SSY analyses for a growing crack provides the basis to extend the Weibull stress as a broadly
applicable fracture parameter for cleavage failure. This section examines the e�ects of ductile tearing on the
Weibull stress and implications on fracture behavior of cracked bodies that exhibit small amounts of stable
crack growth before cleavage failure. To conserve space, we describe only key results computed for the
n � 10 material with f0 � 0:001; similar trends and conclusions remain valid for other f0 values.

Fig. 8(a) shows the computed crack growth resistance curves for this set of material properties. J is
normalized by the cell size and ¯ow stress �Dr0� while Da is normalized by D. The cell with current porosity
f � 0:1 de®nes the current crack-tip location, and thus Da. This ``operational'' de®nition locates the crack-
tip in the region behind the peak stress where stresses decrease rapidly, but ahead of the very highly
damaged region, where the GT model does not accurately predict material response. Fig. 8(a)±(d) present
the dependency of rw, Eq. (5), on crack growth for three values of the shape parameter: m � 10, 20 and 30.
For all levels of crack-tip constraint represented by T=r0, the Weibull stress increases monotonically with
ductile extension. While the apparent rate at which rw increases is smaller than the behavior displayed in

Fig. 8. Crack growth analyses under SSY conditions for n � 10 �E=r0 � 500� and f0 � 0:001 with varying values of parameter m.
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Fig. 7, it must be emphasized that rw is plotted against crack growth Da and not against the loading
parameter J. In the present context, such results clearly demonstrate that small amounts of stable crack
growth do increase the propensity for cleavage fracture as measured by rw. Another interesting feature is
that smaller values of the shape parameter m have greater impact on rw vs. Da trajectories, i.e., drw=da
increases with decreased m. However, this e�ect is less pronounced when m varies from 30 to 20.

Additional results for materials having n � 5 and 20 with f0 � 0:001 are presented in Fig. 9(a)±(d) for
Weibull moduli of m � 10 and 20. The trends observed for the material with n � 10 persist for the materials
analyzed here. However, rw-values for the high hardening material exhibits a weak dependence on ductile
tearing for all values of T=r0, particularly for negative T-stress. Additional insight into this behavior can be
gained by considering the corresponding R-curves for this material. For negative values of T=r0, essentially
steady-growth conditions (dJ=da! 0) develop after only a few cells of crack extension. Such behavior
characterizes a ductile tearing mechanism ahead of the crack tip with essentially constant peak opening
stress. Indeed, the analyses by Xia and Shih (1995a) convincingly demonstrate that crack growth under
steady conditions exhibit a constant peak stress value during further growth and an essentially ®xed dis-
tance between the peak stress location and the crack tip. Because the Weibull stress re¯ects a stress integral
over material points well ahead of the advancing crack tip and, further, the high values for parameter m
magni®es the impact of variations in the near-tip stress ®elds, the levels of rw are relatively unchanged as
crack growth progresses.

These representative analyses aid in understanding the e�ects of stable crack growth on the propensity of
brittle fracture for a cracked body. Consider ®rst the results for a stationary crack presented in Fig. 7. As
previously noted, increasing Weibull stress values with increased loading imply increased failure probability
for the cracked body. Examination of Eq. (5) reveals that such behavior arises from either: (a) increased
FPZ size (i.e., increased volume X); (b) increased near-tip stresses. When a cracked body loses constraint,
the near-tip stresses relax below the values for the high constraint con®guration. Consequently, rw-values
also fall below SSY values and fracture cannot take place unless some other mechanism occurs. Consider

Fig. 9. Crack growth analyses under SSY conditions for n � 5 �E=r0 � 800� and n � 20 �E=r0 � 300� with f0 � 0:001 and varying

values of parameter m.
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now a cracked body that has experienced loss of constraint but which still fails by cleavage mode. Such
behavior is most often observed when testing structural steels at certain temperatures within the transition
region (particularly in mid transition region) where brittle fracture is frequently accompanied by small
amounts of ductile tearing. Following the intense near-tip blunting process for the stationary crack (where
the stresses relax signi®cantly), ductile tearing has the e�ect of ``recovering'' (at least partly) the high
constraint conditions at the crack tip. The trends shown here are consistent with those obtained in previous
numerical analyses (Varias and Shih, 1993; Dodds et al., 1993) in that stable crack growth elevates the near-
tip stresses and increases the volume of the cleavage FPZ. Based upon the notion of rw as the crack-tip
driving force, these results demonstrate that low constraint con®gurations must undergo further loading (as
measured by J ), often accompanied by ductile tearing, to reach a critical value of the Weibull stress, rw;c,
that triggers cleavage fracture.

6. Assessment of constraint e�ects in a fracture specimen

This section outlines a toughness scaling methodology based upon the Weibull stress to assess e�ects of
constraint loss in conventional fracture specimens. The numerical results for the SSY model and 3-D ®nite
element analyses of the standard SE(B) specimens with size 1(T) are employed to correlate constraint loss
on individual fracture toughness values for di�erent material properties �JLSY ! JSSY trajectories). The
objective is to support the applicability of the methodology to quantify the extent of LSY that develops in
fracture specimens.

Fig. 10 illustrates the procedure to assess the e�ects of constraint loss on fracture toughness needed to
construct �JLSY vs. JSSY trajectories. Very detailed, non-linear 3-D ®nite element analyses provide the
functional relationship between the Weibull stress �rw� and the applied loading (J ) for a speci®ed value of
the Weibull modulus, m. The research code WSTRESS (Ruggieri and Dodds, 1997) is employed to
compute the Weibull stress for all analyses. Based upon the argument of the Weibull stress as the crack
driving force, the scaling model requires the attainment of equal values for rw to trigger cleavage fracture
across di�erent specimen geometries even though J-values may vary widely due to constraint loss. Fig. 10
shows curves of rw vs. J for a standard fracture specimen (the present work employs only 1(T ) deep notch
SE(B) specimens) and for a plane±strain, SSY reference solution �T=r0 � 0� with the same thickness of the
fracture specimen. Such curves are constructed for a ®xed, representative value of the Weibull modulus, m,
for each set of mechanical properties ¯ow properties (the normalizing volume for the Weibull stress, V0, is

Fig. 10. Toughness scaling model used to construct JLSY ! JSSY corrections.
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conveniently assigned the value of 1 mm3). JLSY values computed from the domain integral procedures in
the ®nite element analyses of the SE(B) specimens represent thickness average values, which are consistent
with experimental (average) values. For the plane±strain SSY model, JSSY becomes simply the J value at the
crack tip. Even the JLSY value for the fracture specimen, the lines shown on Fig. 10 readily illustrate the
technique used to determine JSSY.

Fig. 11(a)±(d) provides the constraint corrections (LSY! SSY) for the 1(T) SE(B) specimens with
di�erent material properties (n� 5 with E=r0 � 800; n� 10 with E=r0 � 500; n� 20 with E=r0 � 300) and
for varying Weibull moduli, m. The present computations consider values of m� 10, 15, 20, 25 and 30 to
assess the sensitivity of constraint corrections on the speci®ed Weibull modulus. As noted before, these m-
values are consistent with previously reported values for structural steels. Each curve provides pairs of J-
values, JLSY in the SE(B) specimen and JSSY in SSY, that produce the same rw. Reference lines are shown
which de®ne a constant ratio of ``constraint loss'', e.g., Javg � 1:2� J0 which implies that the SE(B) average
J must be 20% larger than the SSY value to generate the same Weibull stress. For each value of the Weibull
modulus, the SE(B) and SSY curves agree very well early in the loading history while the SE(B) specimen
maintains near SSY conditions across the crack front (recall that computation of rw in the SE(B) specimens
considers the entire crack front). Once near-front stresses deviate from the (plane±strain) SSY levels, the rw

curves for the SE(B) specimens fail to increase at the same rate with further loading. These results clearly
illustrate the gradual nature of constraint loss in the deep-notch SE(B) specimens, especially for moderate
to low hardening materials. The Weibull modulus does have an appreciable a�ect on predictions of con-
straint loss; increasing m values indicate a higher load level at the onset of constraint loss and a reduced rate
of constraint loss under further loading. The larger m values, in e�ect, assign a greater weight factor to
stresses at locations very near the crack front. The bending ®eld, which impinges on the crack front, a�ects
the smaller m curves more readily.

Fig. 11. JLSY ! JSSY correction using a scaling methodology based upon the Weibull stress with varying Weibull moduli for plane-sided

1(T) SE(B) specimens. J-values are normalized by crack ligament, b � W ÿ a, and yield stress r0.
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7. Concluding remarks

We have presented a computational framework for brittle fracture which incorporates weakest link
statistics and a micromechanics model re¯ecting local damage of the material. The approach addresses the
strong e�ects of constraint variations on (macroscopic) cleavage fracture toughness which also includes
modeling of ductile tearing when cleavage failure is preceded by small amounts of stable crack growth. The
Weibull stress (rw) emerges as a probabilistic fracture parameter to de®ne conditions leading to (local)
material failure. Unstable crack propagation occurs at a critical value of rw which may be attained prior to
or following some amount of stable, ductile crack extension. When implemented in a ®nite element code,
the computational model predicts the evolution of Weibull stress with applied load (conveniently measured
by J in the present work) while the crack tip undergoes ®rst blunting and then stable, ductile crack ex-
tension. The SSY analyses under varying levels of T-stress presented in our study provide valuable insight
about the e�ects of crack-tip constraint on fracture resistance. These SSY results exhibit the essential
features of the micromechanics approach in correlating macroscopic fracture toughness with constraint
variations and ductile tearing. Application of the methodology in the form of a toughness scaling model
provides a simple procedure to correct toughness values for e�ects of constraint loss in conventional
fracture specimens.

However, because the model also simpli®es a seemingly complex array of metallurgical processes and
operative mechanisms at the microlevel, the application of the model in fracture mechanics applications,
particularly in fracture assessments procedures (i.e., predictions of fracture events in large engineering
structures), still remains untested. In particular, robust schemes to calibrate the Weibull parameters (m, ru)
become a key element to correlate e�ects of constraint loss for varying crack con®gurations and loading
modes (tension vs. bending) based upon rw. Preliminary e�orts along these lines have recently been made
by Gao et al., (1998) who introduced a new, improved calibration procedure for the Weibull parameters (m,
ru). Ongoing work is currently underway to extend the model into a full 3-D framework to correlate
through-crack fracture specimens and surface-crack components.
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