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Abstract

This study describes a methodology based on a local failure model to predict the strong effects of constraint vari-
ations on (macroscopic) cleavage fracture toughness. We limit our focus to a stress-controlled, cleavage mechanism for
material failure and adopt the Weibull stress (o) as the local parameter to describe crack-tip conditions. A central
feature of the present investigation involves the interpretation of oy, as a macroscopic crack driving force and the
implications of its use in assessments of brittle fracture behavior. When implemented in a finite element code, the
computational model predicts the evolution of Weibull stress with crack-tip stress triaxiality and stable crack growth.
The small-scale yielding analyses under varying levels of T-stress exhibit the essential features of the micromechanics
approach in correlating macroscopic fracture toughness with constraint variations and ductile tearing. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Conventional fracture mechanics methodologies to assess unstable cracking behavior (cleavage fracture)
of different cracked bodies (i.e., laboratory specimens and engineering structures) rely on the similarity of
their respective crack-tip stress and deformation fields. Under small scale yielding (SSY) conditions, a single
parameter, such as the linear elastic stress intensity factor, K, and the J-integral (or, equivalently, the crack-
tip opening displacement, CTOD or §), uniquely scales the elastic—plastic near-tip fields. In the present
context, SSY is meant to pertain to loading conditions for which near-tip plasticity is well contained and
controlled by the elastic fields for an infinite crack. To the extent that such one-parameter singular fields
dominate over microstructurally significant size scales (i.e., the fracture process zone (FPZ) of a few
CTODs ahead of a macroscopic crack), the parameters K and J (J) fully describe the local conditions
leading to unstable (cleavage) failure (see, e.g., the review by Hutchinson, 1983).
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However, fracture testing of ferritic structural steels in the ductile-to-brittle (DBT) transition region
consistently reveals a significant effect of specimen geometry and loading mode (bending vs. tension) in
cleavage toughness values as measured by the critical parameters K., J. or ., (see Sorem et al., 1991; De
Castro et al., 1979 for illustrative data). These studies show significant elevations in the elastic—plastic
fracture toughness for shallow crack SE(B) specimens and tension geometries of ferritic steels tested in the
transition region, where transgranular cleavage triggers macroscopic fracture. At increased loads in a finite
body, such as a cracked specimen or structure, the initially strong SSY fields gradually change to fields
under large scale yielding (LSY) as crack-tip plastic zones increasingly merge with the global bending
plasticity on the nearby traction free boundaries. This phenomenon, often termed loss of constraint, con-
tributes to the apparent increased toughness of shallow cracked and tension loaded geometries observed in
fracture testing. Once SSY conditions no longer apply, larger J-values in the finite body are necessary to
generate a highly stressed region ahead of crack tip sufficient to trigger cleavage. These features have
enormous practical implications in defect assessment procedures, particularly repair decisions and life
extension programs of in-service structures as well as structural design specifications.

These limitations of single parameter fracture mechanics approaches to characterize the fracture be-
havior of fully yielded crack geometries motivated the development of micromechanics models based upon
a probabilistic interpretation of the fracture process (most often referred to as local approaches). Attention
has been primarily focused on probabilistic models incorporating weakest link statistics to describe material
failure caused by stress-controlled transgranular cleavage. By coupling macroscopic measures of fracture
toughness (J, CTOD) with micromechanics models for material failure ahead of the crack tip, researchers
endeavour to predict, rather than correlate, constraint effects on fracture toughness. The seminal work of
Beremin (1983) provides the basis for establishing a relationship between the microregime of fracture and
macroscopic crack driving forces (such as the J-integral) by introducing the Weibull stress (o) as a
probabilistic fracture parameter. Retaining contact with conventional approaches, this fracture parameter
conveniently characterizes macroscopic fracture behavior for a wide range of loading conditions and crack
configurations.

The central feature in the above methodologies adopts the simple axiom that unstable crack propagation
(cleavage) occurs at a critical value of the Weibull stress; under increased remote loading (as measured by
J), differences in evolution of the Weibull stress reflect the potentially strong variations of near-tip stress
fields. This also permits a convenient treatment of ductile tearing effects on macroscopic fracture toughness.
For materials having sufficient resistance to cleavage fracture in the mid transition region, intense plastic
strains coupled with high stresses directly ahead of the blunting crack tip generally produce ductile tearing
prior to unstable crack propagation by cleavage. This “competition” between local failure by cleavage and
ductile mechanisms controls the cleavage fracture resistance of ferritic steels in the DBT regime. Ductile
extension of the crack front alters the stress histories (relative to a stationary crack) in the material ahead of
the blunting region and increases the volume of the FPZ (Varias and Shih, 1993; Dodds et al., 1993). Since
evaluation of the Weibull stress occurs over a relevant (volume) of near-tip material termed the process
zone, this approach reflects ductile crack growth effects on the local stress—strain fields that drive the mi-
croscale fracture. The Weibull stress then describes both the effects of stressed volume and the potentially
strong changes in the character of the near-tip stress fields due to constraint loss and ductile crack ex-
tension.

The plan of the paper is as follows. In the next section, we present an overview of local (micromechanics)
modeling of cleavage fracture incorporating statistics of microcracks. The approach builds upon weakest
link theory and introduces the Weibull stress (oy,) as a probabilistic fracture parameter. Numerical methods
and geometric models applicable for SSY analyses are then described with emphasis on realistic modeling
of ductile crack growth using the computational cell methodology. A simplified form of the Gurson—
Tvergaard (GT) (Gurson; Tvergaard, 1990) constitutive model for dilatant plasticity serves to predict
microscopic void growth within a layer of cells defined over the crack plane. Our SSY analyses provide key



E.T. Neto, C. Ruggieri | International Journal of Solids and Structures 38 (2001) 2171-2187 2173

results for stationary and growing cracks to assess effects of constraint and ductile tearing on cleavage
fracture using a local fracture parameter. The paper also explores development of a toughness scaling
methodology based upon Weibull stress trajectories for different constraint conditions which enables as-
sessment of constraint loss in conventional fracture specimens. The present study builds upon previous
work based on a local approach for fracture by Ruggieri and Dodds (1996a) and extends their analyses to
cover a wider range of parametric values and materials options. Both works, when taken together, provide
a fairly extensive body of results against which the robustness of the local fracture parameter (o) can be
weighed.

2. Local modeling of cleavage fracture incorporating statistics
2.1. Probabilistic fracture parameter: the Weibull stress

Limiting attention to the specific micromechanism of transgranular cleavage, we consider an arbitrarily
stressed body where a macroscopic crack lies in a material containing randomly distributed flaws as il-
lustrated in Fig. 1. FPZ ahead of the crack tip is defined as the highly stressed region where the local
operative mechanism for cleavage takes place; this region contains the potential sites for cleavage cracking.
For the purpose of developing a probabilistic model for brittle fracture, we divide the FPZ ahead of crack
tip in a large number of unit volumes statistically independent; each unit volume contains a substantially
number of statistically independent microflaws uniformly distributed.

The statistical nature of brittle fracture underlies a simplified treatment for unstable crack propagation
of the configuration represented in Fig. 1(a). Based upon probability theory and invoking the Poisson
postulates (see, e.g., Feller, 1957), the elemental failure probability, 02, is related to the distribution of the
largest flaw in a reference volume of the material, which can be expressed as

0P = 5V/Oog(a)da (1)

where g(a)da defines the average number of microcracks per unit volume having sizes between a and
a + da. Here, a common assumption adopts an asymptotic distribution for the microcrack density in the
form g(a) = (1/%)(ro/a)’, where r and r, are parameters of the distribution and ¥, denotes a reference
volume (Freudenthal, 1968; Evans and Langdon, 1976). The implicit distribution of fracture stress can be

Near-Tip Fracture
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Fig. 1. (a) FPZ ahead a macroscopic crack containing randomly distributed flaws; (b) unit volume ahead of crack tip subjected to a
multiaxial stress state.
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made explicit by introducing the dependence between the critical microcrack size, a., and stress in the form
a. = (K*/Ya?), where Y represents the specimen dependent geometry factor and ¢ denotes a tensile
(opening) stress acting on the microcrack plane. A simple manipulation of this expression on the basis of
weakest link statistics provides the basis for establishing a relationship between the microregime of fracture
and macroscopic crack driving forces (such as the J-integral) for the fracture stress of a cracked solid as
(Beremin, 1983; Ruggieri and Dodds, 1996a, b; 1997; 1998)

o -1-on[ 4 [ (2

where Q denotes the volume of the (near-tip) FPZ, V), is a reference volume and o, is the maximum
principal stress acting on material points inside the FPZ. Ruggieri and Dodds (1996a, b; 1997, 1998) define
the FPZ as the loci ¢, > Agy, with A = 2. Alternative definitions for the FPZ include the plastic region
ahead of the macroscopic crack g, > oy where o, denotes the equivalent Mises stress (Beremin, 1983;
Mudry, 1987).

Following Beremin (1983), the Weibull stress is defined as the stress integral

1 1/m
Oy = [70/90’1’%9] . (3)

which permits rewriting the stress integral of Eq. (2) in the form

F(aw)zl—exp{—<(;—‘:>m]. 4)

This expression defines a two-parameter Weibull distribution (Weibull, 1939) for the random variable oy.
Parameters m and o, appearing in Eq. (4) denote the Weibull modulus and the scale parameter of the
Weibull distribution.

2.2. Generalization of the Weibull stress for a growing crack

The Weibull stress describes local conditions leading to unstable (cleavage) failure and appears, at least
as a first approximation, to remain applicable during small amounts of ductile crack extension. Highly
localized, non-planar crack extension and void growth at the larger inclusions, both of which occur over a
scale of < 1. (the CTOD at onset of crack growth initiation), should not alter the material properties m
and ¢, over the much larger process zone relevant for cleavage initiation. Further, small amounts of ductile
crack growth modify the stress history of material points within the process zone for cleavage fracture
which affects directly the evolution of Weibull stress. A detailed discussion of the approach adopted here
for generating the evolution of the Weibull stress with J (or equivalently CTOD) for a growing crack is
given by Ruggieri and Dodds (1996a).

Fig. 2 illustrates the development of the active FPZ (recall that the FPZ is defined as the loci where
g, = oy with 4 = 2) given by a snapshot of the stress field ahead of the growing crack. Points on such a
contour all lie within the forward sector |6 < /2. The envelope of all material points for which g, = Ag
during the history of growth defines an alternative, cumulative process zone. Consequently, the 3-D form of
the Weibull stress for a growing crack becomes simply

1 1/m
Oy = | — o'dQ"| 5
[Vo /Q 1 } 2

where Q" denotes the active volume of the FPZ, 6, > Aoy, which moves forward with the advancing tip. The
proposed generalization of oy to include ductile tearing maintains the relative simplicity of computa-
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Fig. 2. Schematic representation for the evolution of the FPZ for a growing crack. The crack has advanced from a = gy to a = ay + Aa.

tions while, at the same time, fully incorporating the effects of alterations in the stress field ahead of the
crack tip.

3. Computational procedures and geometric models
3.1. Overview of crack growth modeling using computational cells

The computational cell methodology proposed by Xia and Shih (1995a) (Xia et al., 1995b) provides a
model for ductile crack extension that includes a realistic void growth mechanism, and a microstructural
length-scale physically coupled to the size of the FPZ. Void growth remains confined to a layer of material
symmetrically located about the crack plane, as illustrated in Fig. 3(a), and having thickness D, where D is
associated with the mean spacing of the larger, void initiating inclusions. This layer consists of cubical cell
elements with dimension D on each side; each cell contains a cavity of initial volume fraction f; (the initial
void volume divided by cell volume). As a further simplification, the void nucleates from an inclusion of
relative size f, immediately upon loading. Progressive void growth and subsequent macroscopic material
softening in each cell are described with the Gurson-Tvergaard (GT) constitutive model for dilatant
plasticity (Gurson, 1977; Tvergaard, 1990). Fig. 3(b) shows the typical, plane strain finite element repre-
sentation of the computational cell model where symmetry about the crack plane requires elements of size
D/2. Material outside the computational cells, the “background” material, follows a conventional J, flow
theory of plasticity and remains undamaged by void growth in the cells.

When f in the cell incident on the current crack tip reaches a critical value, fr (which typically has a
value of 0.15-0.25), the computational procedure removes the cell thereby advancing the crack tip in
discrete increments of the cell size. The final stage of void linkup with the macroscopic crack front occurs by
reducing the remaining stresses to zero in a prescribed manner. Tvergaard (1990) refers to this process as
the element extinction or vanish technique. This cell extinction process creates new traction free surfaces in
a controlled manner and also eliminates numerical difficulties in the finite strain computations. Ruggieri
and Dodds (1996c) provide further details of the computational implementation of the cell extinction
scheme used in the present numerical analyses.

—» %1
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Fig. 3. Modeling of ductile tearing using computational cells.
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Material properties required for this methodology include: for the background material Young’s
modulus (E), Poisson’s ratio (v), yield stress (g¢) and hardening exponent (n) or the actual measured stress—
strain curve; and for the computational cells: D and f; (and of much less significance f;). The background
material and the matrix material of the cells generally have identical flow properties. Using an experimental
J-Aa curve obtained from a conventional SE(B) or C(T') specimen, a series of finite element analyses of the
specimen are conducted to calibrate values for the cell parameters D and f; which bring the predicted J-Aa
curve into agreement with experiment. Experience with plane—strain finite element analyses of SE(B) and
C(T) specimens to estimate D and f; for common structural and pressure vessel steels suggests values of 50—
200 pm for D, 0.001-0.005 for f;, with f¢ typically 0.15-0.20. Once determined in this manner using a
specific experimental R-curve, D and f;, become ‘“‘material” parameters and remain fixed in analyses of all
other specimen geometries for the same material.

3.2. Finite element models

The modified boundary layer (MBL) model (Larsson and Carlsson, 1973; Rice, 1974) simplifies the
generation of numerical solutions for stationary and growing cracks under well-defined SSY conditions
with varying levels of constraint. Fig. 4 shows the plane—strain finite element model for an infinite domain,
single-ended crack problem; Mode I loading of the far field permits analysis using one-half of the domain as
shown. With the plastic region limited to a small fraction of the domain radius, R, < R/20, the general form
of the asymptotic crack-tip stress fields well outside the plastic region is given by Williams (1957)

K
V2nr

where K is the stress intensity factor, f;;(0) define the angular variations of in-plane stress components, and
the non-singular term 7 represents a tension (or compression) stress parallel to the crack. Numerical so-
lutions for different levels of T/a, are generated by imposing displacements of the elastic, Mode I singular
field on the outer circular boundary (» = R) which encloses the crack

O-ij =

fij(0) + T61;0;, (6)

1 —?

Rcos0, (7)

I1+v /R 0
u(R,0) = K; z %cos(§>(3—4v—cos(9)+T

MR sin 6. (8)

b(R,0) = Ky it ﬁsin<§>(3 — 4y — cos0) + T~
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Fig. 4. SSY model with (K, T') fields imposed on boundary.
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Stationary crack analyses employ a conventional mesh configuration having a focused ring of elements
surrounding the crack front with a small key-hole at the crack tip; the radius of the key-hole, g, is 2.5 pm
(0.0025 mm) with R/D = 10°. This SSY model has one thickness layer of 2065 8-node, 3-D elements with
plane-strain constraints imposed (w =0) on the nodes. Evaluation of the Weibull stress requires inte-
gration over the process zone, including the region as » — 0. For crack growth analyses, the model has a
single layer of 120 computational cells along the crack plane, with the plastic behavior of each cell as
described in Section 3.1. These computational cells have a fixed size of D/2 x D/2, with D = 200 pm and
R/D = 112500. Fig. 3(b) shows the initial crack-tip geometry for the growth analyses.

The SSY model has a small initial root radius at the crack front (blunt tip) which provides two numerical
benefits: (1) it accelerates convergence of the finite—strain plasticity algorithms during the initial stage of
blunting, and (2) it minimizes numerical problems during computation of the Weibull stress over material
incident on the crack tip. To limit effects of the initial root radius on Weibull stress calculations, the CTOD
(0) is required to equal four times the initial radius (p,) at a deformation consistent with ayb/J = 250,
where gy is the reference yield stress (see Section 3.3) and b is the remaining crack ligament. This condition
requires p, ~ 2.5 pm for SSY model and flow properties considered in this work. A series of SSY analyses
containing a range of initial root radii confirm that the Weibull stress trajectories after reaching steady state
conditions become independent of the initial root radius for d/p, > 4. However, prior to reaching steady
state conditions, the initial root radius does affect the Weibull stress as the near-tip stress fields are depedent
upon the blunt tip radius and local geometries (such as, for example, mesh details). We do not consider this
an important issue in the present study since the load levels prior to reaching steady state conditions are
very small and are not very relevant in fracture mechanics analyses for the material properties considered in
the present work. For example, cleavage fracture toughness levels for typical structural steels under es-
sentially SSY conditions may range from 60 to 150 MPa /m; such values are already within the steady state
region (therefore independent of the initial root radius) for the MBL model employed.

Section 6 outlines a toughness scaling methodology based upon the Weibull stress to assess effects of
constraint loss in conventional fracture specimens. The numerical solutions employ the SSY model de-
scribed above and 3-D finite element analyses for a plane-side deep notch (a/W = 0.5) SE(B) specimen with
B =25 mm [1(7)] and conventional geometry (W /B = 2). Here, a denotes the crack length and W is the
specimen width. To maintain consistency with the finite element models for the SSY analyses, the SE(B)
specimen has similar level of mesh refinement at the crack tip as the SSY model for stationary crack. The
quarter-symmetric, 3-D models for the SE(B) specimen has 18500 nodes and 16000 elements with 14
variable thickness layers defined over the half-thickness (B/2); the thickest layer is defined at centerplane
(x3 = 0) with thinner layers defined near the free surface (x; = B/2) to accommodate strong thickness
variations in the stress distribution.

3.3. Constitutive models

To describe the evolution of void growth and associated macroscopic material softening in the com-
putational cells, we adopt the Gurson (1977) and Tvergaard (1990) potential function (g) for plastic flow in
porous media

Oe

§(00m,7.) = (Z) + 241/ cosh (3q22§““) = (1+a?) =0, ©)

where o. denotes the effective Mises (macroscopic) stress, o, is the mean (macroscopic) stress, @ is the
current flow stress of the cell matrix material and f defines the current void fraction. Under multiaxial stress
states, o, = (3S,~,-S,-j/2)'/ * where S;; denotes the deviatoric components of Cauchy stress. Factors ¢y, ¢» and
g3 introduced by Tvergaard improve the model predictions for periodic arrays of cylindrical and spherical
voids; here we use ¢; = 1.25, ¢, = 1.0 and ¢; = ¢7.
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Fig. 5. Uniaxial true stress—logarithmic strain response of materials employed in the analyses using a power-hardening model.

The background material outside of the computational cells follows a J, flow theory with the Mises
plastic potential obtained by setting /' = 0 in Eq. (9). The uniaxial true stress-logarithmic strain response
for both the background and cell matrix materials follows a simple power-hardening model

€ o
) €< €0,
€0 (o))

€ a\"
—=(—1], €>c¢,
€0 )

where g and ¢ are the reference (yield) stress and strain, and # is the strain hardening exponent. Sections 4
and 5 describe numerical solutions for the SSY boundary-layer model with non-zero 7-stress using ma-
terials with n» = 5 (high hardening) with E/0y = 800, n = 10 (moderate hardening) with E£/a, = 500 and
n = 20 (low hardening) with £ /g, = 300; each with v = 0.3. The stress—strain response for these materials is
shown in Fig. 5. These properties characterize a relatively wide range of plastic behavior for structural steels
while, at the same time, reflecting the upward trend in yield stress with the decrease in strain hardening
exponent characteristic of ferritic steels.

(10)

3.4. Finite element procedures

Finite element solutions are generated using the research code WARP3D (Koppenhoefer et al., 1994).
Key features of the code employed in this work include: (1) the GT and Mises constitutive models im-
plemented in a finite—strain setting, (2) cell extinction using a traction—separation model, (3) automatic load
step sizing based on the rate of damage accumulation, and (4) evaluation of the J-integral using a domain
integral procedure. Fracture models are constructed with 3-D, 8-node hexahedral elements. Use of the so-
called B formulation (Hughes, 1980) precludes mesh lock-ups that arise as the deformation progresses into
fully plastic, incompressible modes.

The local value of the mechanical energy release rate at a point along a crack front is given by Moran
and Shih (1987)

. Ou;
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where I" denotes a contour defined in a plane normal to the front on the undeformed configuration (¢ = 0)
beginning at the bottom crack face and ending on the top face, n; is the outward normal to I', #~ denotes
the stress—work density per unit of undeformed volume, P; and u; are Cartesian components of (unsym-
metric) Piola—Kirchoff stress and displacement in the crack front coordinate system. Our finite element
computations employ a domain integral procedure (Moran and Shih, 1987) for numerical evaluation of Eq.
(11). A thickness average value for J is computed over domains defined outside material having the highly
non-proportional histories of the near-tip fields and thus retains a strong domain (path) independence.
Such J-values provide a convenient parameter to characterize the average intensity of far field loading on
the crack front.

4. Measure of constraint using SSY fields

A convenient description for the diverse range of crack-tip fields (which depends on crack geometry and
loading mode) can be motivated by considering the progression of plastic states under increased remote
loading for a cracked body. At low loads, the near-tip stresses and deformations evolve according to a self-
similar field characterized by a high level of stress triaxiality. As plastic flow progresses from well-contained
yielding to LSY, the near-tip stresses gradually relax below the levels for high triaxiality stress states (see,
for example, the early numerical analyses of McMeeking and Parks (1979), and Shih and German, 1981).
This evolving level of stress triaxiality ahead of the crack front under increased remote loading is referred to
as constraint.

The approach to quantify the level of constraint in a finite cracked body utilizes full “reference’ crack-
tip fields constructed for SSY conditions. The crack-tip fields computed for the finite body are then
compared to SSY fields to define relative constraint differences. Finite element analyses of the MBL
problem enable construction of SSY fields for general material response and admit the option to include
finite-strain (blunting) effects at the crack tip. The plane-strain element mesh represents a single-ended
crack in an infinite body where specified values for K; and 7 uniquely define the linear-elastic remote field
enclosing a vanishingly small plastic zone at the tip relative to other geometric dimensions such as crack size
(see Fig. 4). Incremental plasticity theory, viscoplasticity and arbitrary material flow properties, for ex-
ample, introduce no difficulties.

Fig. 6(a)-(d) provides key results to verify the existence of such fields for well-contained, limited scale
plasticity under varying levels of applied T-stress for the material with n = 10(E/a, = 500). In the plots,
distances all scale with (Kj/ 00)2 whereas the opening stresses are normalized by oy. At very low remote
loading for all levels of applied T-stress (K; = 20, 40 MPa /m), the near-tip stresses increase as the process
of crack-tip blunting takes place. After the notch root radius increases to several times the initial radius p, a
steady state solution develops so that the near-tip fields under SSY conditions are simply a continuous series
of self-similar states. Additional results for analyses conducted for materials with n = 5 (E/ay = 800) and
n =20 (E/ay = 300) display essentially similar trends. Here, the crack-tip fields for these materials collapse
onto a single normalized curve once sufficient crack-tip blunting occurs.

These plane—strain fields thus define a family of reference fields for stationary cracks where specified
values for K7 and T uniquely define the elastic—plastic fields along the crack tip when a vanishingly small
plastic zone encloses the tip. The differences between the actual finite-body field and those of the com-
parison SSY field (having the applicable elastic T-stress), quantify the extent of LSY effects. Despite the
apparent small differences between these fields (differences between high and low constraint fields are of the
order of ~10%), the implications for fracture are enormous as demonstrated by experimental observations.
Indeed, factors exceeding 3-5 are often observed in toughness values Kj, J. or J. for high constraint and
low constraint fracture specimens. This aspect will become more evident in Section 5.
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Fig. 6. Near-tip opening stresses under SSY conditions for n = 10, £/gy = 500 and varying levels of applied 7-series. Plots are gen-
erated for load levels K = 20, 40, 60, 80, 100, 125 and 150 MPa \/m.

In the present context pertaining to a local approach to cleavage fracture, the SSY reference solutions
provide the necessary fields to compute the evolution of the Weibull stress with K; and 7 as well as ductile
tearing. For a fixed set of material dependent constants in the microscale fracture criterion, these rela-
tionships constitute the SSY reference conditions to assess the strong effects of constraint and stable crack
growth on fracture resistance.

5. Constraint and ductile tearing effects on fracture

This section provides key results for the SSY analyses under varying levels of T-stress used to assess
effects of crack-tip constraint and ductile tearing on fracture resistance. The presentation begins with de-
scriptions for the evolution of Weibull stress with crack-tip stress triaxiality and then turns to effects of
crack growth on Weibull stress trajectories. A central feature of the present investigation involves the in-
terpretation of a, as a macroscopic crack driving force and the implications of its use in assessments of
brittle fracture behavior. For convenience, the plane-strain SSY analyses utilize finite element models with
a reference unit thickness, B = 1 mm, throughout.

5.1. The Weibull stress for stationary cracks

SSY solutions with varying levels of applied 7-stress are generated for power-law hardening materials
having three levels of strain hardening: n = 5 (E/gy = 300), n = 10 (E/0y = 500) and n = 20 (E/gy = 800).
In each analysis, the full value of T-stress is imposed first (which causes no yielding), followed by the Kj field
imposed in an incremental manner. In evaluating the Weibull stress, Eq. (3), under increasing K levels, the
value of the Weibull modulus is adopted as m = 10 for the high strain hardening material (» = 5) and
m = 20 for the moderate to low-hardening material (» = 10 and 20). In particular, values for m = 20
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characterize the distribution of Weibull stress at cleavage fracture for a nuclear pressure vessel steel (ASTM
AS508) (Beremin, 1983). For the analyses of the moderate strain hardening material (n = 10) with 7/go = 0,
two other values of the Weibull modulus are also considered: m = 10 and 30. This range of parameter
covers most m-values for structural steels reported by Gao et al. (1998) and Ruggieri et al. (in press).

Fig. 7(a)—(c) shows the variation of Weibull stress under increasing deformation for the three levels of
hardening n = 5, 10, 20 and for values of T-stress ranging from —0.75 < T/gy < 0.5. The T-stress values
adopted in our analyses are consistent with the ranges defined by SSY analyses (see, e.g., Parks, 1992). For
T/op =0 and fixed strain hardening (n = 10), Fig. 7(d) shows the variation of Weibull stress with in-
creasing deformation for m = 10, 20 and 30. In these plots, K7 /(63R) describes the far-field loading with the
Weibull stress normalized by the yield stress, og. For each material, the evolution of ¢, as deformation
progresses depends markedly on the level of crack-tip stress triaxiality as measured by 7//g,. The Weibull
stress trajectories for positive values of T/ag, are consistently above the corresponding trajectories for
T /oo = 0. Conversely, the evolutions of g, for negative values of T//g, remain below the Weibull stress
curve for T/oy = 0. Since the Weibull stress and the far-field loading in each plot are normalized by the
material’s yield stress, oy, direct comparison of the fracture resistance behavior for the materials is
somewhat difficult. However, these results demonstrate clearly the strong effect of constraint loss
(T /oy < 0) on the levels of oy for all materials, particularly for moderate to low hardening materials
(n=10-20). The effects of T'/a, on g, observed here are entirely consistent with the J-Q characterization of
SSY stress fields described by O’Dowd and Shih (1991, 1992). The lower oy-values with 7'/ < 0 follow
from the reduced stress triaxiality levels ahead of the crack tip, as described by negative Q-values.

A central feature of the above results is that the failure probability for the stressed cracked body at fixed
values of T/oy monotonically increases for increased oy-values. This conclusion derives directly from the
coupling between the Weibull stress and loading as implied by Eq. (3) in conjunction with Eq. (4). The
results displayed by these plots also support observations about the strong effect of small differences in
near-tip stresses for high and low constraint configurations on cleavage fracture behavior made previously.
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Fig. 7. Stationary crack analysis under SSY conditions and varying hardening properties.
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In other words, larger K-values in the finite body are necessary to increase the crack-tip driving force, as
expressed by g, in Fig. 7, such as local conditions to trigger cleavage fracture can be reached. This con-
clusion applies for other loading measures such as J and CTOD.

Another important feature of these results is the similar shape of g,-trajectories with 7'/g, after the early
stages of loading; here, the magnitude of Weibull stress all scale with 7'/a, in accordance with gy, = ﬁme/ "
(Mudry, 1987), where the proportionality constant, f3,,, depends on m as exhibited by the plots displayed in
Fig. 7(d). Because parameter T /o, scales the near-tip stresses relative to the reference field (7/ay = 0), as
presented in Fig. 6, it also affects the magnitude of the Weibull stress at rates that decrease (increase) with
reduced (increased) stress triaxiality. Consequently, the evolution of Weibull stress with remote loading can
be generalized as o, = ﬁanf /™ where the proportionality constant, f;,,, depends on m and 7T/a,.

5.2. Effects of ductile tearing on the Weibull stress

The SSY analyses for a growing crack provides the basis to extend the Weibull stress as a broadly
applicable fracture parameter for cleavage failure. This section examines the effects of ductile tearing on the
Weibull stress and implications on fracture behavior of cracked bodies that exhibit small amounts of stable
crack growth before cleavage failure. To conserve space, we describe only key results computed for the
n = 10 material with f; = 0.001; similar trends and conclusions remain valid for other f; values.

Fig. 8(a) shows the computed crack growth resistance curves for this set of material properties. J is
normalized by the cell size and flow stress (Da,) while Aa is normalized by D. The cell with current porosity
f = 0.1 defines the current crack-tip location, and thus Aa. This “operational” definition locates the crack-
tip in the region behind the peak stress where stresses decrease rapidly, but ahead of the very highly
damaged region, where the GT model does not accurately predict material response. Fig. 8(a)-(d) present
the dependency of gy, Eq. (5), on crack growth for three values of the shape parameter: m = 10, 20 and 30.
For all levels of crack-tip constraint represented by 7/g,, the Weibull stress increases monotonically with
ductile extension. While the apparent rate at which oy, increases is smaller than the behavior displayed in

3
Aa/D
(d)

Fig. 8. Crack growth analyses under SSY conditions for n = 10 (E/go = 500) and f, = 0.001 with varying values of parameter m.
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Fig. 7, it must be emphasized that o,, is plotted against crack growth Aa and not against the loading
parameter J. In the present context, such results clearly demonstrate that small amounts of stable crack
growth do increase the propensity for cleavage fracture as measured by oy,. Another interesting feature is
that smaller values of the shape parameter m have greater impact on oy, vs. Aa trajectories, i.e., da,/da
increases with decreased m. However, this effect is less pronounced when m varies from 30 to 20.

Additional results for materials having » = 5 and 20 with f, = 0.001 are presented in Fig. 9(a)-(d) for
Weibull moduli of m = 10 and 20. The trends observed for the material with n = 10 persist for the materials
analyzed here. However, o,-values for the high hardening material exhibits a weak dependence on ductile
tearing for all values of /oy, particularly for negative T-stress. Additional insight into this behavior can be
gained by considering the corresponding R-curves for this material. For negative values of T /gy, essentially
steady-growth conditions (dJ/da — 0) develop after only a few cells of crack extension. Such behavior
characterizes a ductile tearing mechanism ahead of the crack tip with essentially constant peak opening
stress. Indeed, the analyses by Xia and Shih (1995a) convincingly demonstrate that crack growth under
steady conditions exhibit a constant peak stress value during further growth and an essentially fixed dis-
tance between the peak stress location and the crack tip. Because the Weibull stress reflects a stress integral
over material points well ahead of the advancing crack tip and, further, the high values for parameter m
magnifies the impact of variations in the near-tip stress fields, the levels of o, are relatively unchanged as
crack growth progresses.

These representative analyses aid in understanding the effects of stable crack growth on the propensity of
brittle fracture for a cracked body. Consider first the results for a stationary crack presented in Fig. 7. As
previously noted, increasing Weibull stress values with increased loading imply increased failure probability
for the cracked body. Examination of Eq. (5) reveals that such behavior arises from either: (a) increased
FPZ size (i.e., increased volume Q); (b) increased near-tip stresses. When a cracked body loses constraint,
the near-tip stresses relax below the values for the high constraint configuration. Consequently, oy,-values
also fall below SSY values and fracture cannot take place unless some other mechanism occurs. Consider
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Fig. 9. Crack growth analyses under SSY conditions for n =5 (E/oy = 800) and n = 20 (E/oy = 300) with f, = 0.001 and varying
values of parameter m.
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now a cracked body that has experienced loss of constraint but which still fails by cleavage mode. Such
behavior is most often observed when testing structural steels at certain temperatures within the transition
region (particularly in mid transition region) where brittle fracture is frequently accompanied by small
amounts of ductile tearing. Following the intense near-tip blunting process for the stationary crack (where
the stresses relax significantly), ductile tearing has the effect of “recovering” (at least partly) the high
constraint conditions at the crack tip. The trends shown here are consistent with those obtained in previous
numerical analyses (Varias and Shih, 1993; Dodds et al., 1993) in that stable crack growth elevates the near-
tip stresses and increases the volume of the cleavage FPZ. Based upon the notion of gy, as the crack-tip
driving force, these results demonstrate that low constraint configurations must undergo further loading (as
measured by J), often accompanied by ductile tearing, to reach a critical value of the Weibull stress, oy,
that triggers cleavage fracture.

6. Assessment of constraint effects in a fracture specimen

This section outlines a toughness scaling methodology based upon the Weibull stress to assess effects of
constraint loss in conventional fracture specimens. The numerical results for the SSY model and 3-D finite
element analyses of the standard SE(B) specimens with size 1(7) are employed to correlate constraint loss
on individual fracture toughness values for different material properties (Jisy — Jssy trajectories). The
objective is to support the applicability of the methodology to quantify the extent of LSY that develops in
fracture specimens.

Fig. 10 illustrates the procedure to assess the effects of constraint loss on fracture toughness needed to
construct (Jisy vs. Jssy trajectories. Very detailed, non-linear 3-D finite element analyses provide the
functional relationship between the Weibull stress (gy) and the applied loading (J) for a specified value of
the Weibull modulus, m. The research code WSTRESS (Ruggieri and Dodds, 1997) is employed to
compute the Weibull stress for all analyses. Based upon the argument of the Weibull stress as the crack
driving force, the scaling model requires the attainment of equal values for gy, to trigger cleavage fracture
across different specimen geometries even though J-values may vary widely due to constraint loss. Fig. 10
shows curves of gy, vs. J for a standard fracture specimen (the present work employs only 1(7") deep notch
SE(B) specimens) and for a plane-strain, SSY reference solution (7/ay = 0) with the same thickness of the
fracture specimen. Such curves are constructed for a fixed, representative value of the Weibull modulus, 1,
for each set of mechanical properties flow properties (the normalizing volume for the Weibull stress, V;, is

! ' T T
SSY (T=0)
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.
Fixed m | | -
S
Sisy IRy J

Fig. 10. Toughness scaling model used to construct Jigy — Jssy corrections.
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Fig. 11. Jisy — Jssy correction using a scaling methodology based upon the Weibull stress with varying Weibull moduli for plane-sided
1(7) SE(B) specimens. J-values are normalized by crack ligament, b = W — a, and yield stress ay.

conveniently assigned the value of 1 mm?). Ji gy values computed from the domain integral procedures in
the finite element analyses of the SE(B) specimens represent thickness average values, which are consistent
with experimental (average) values. For the plane—strain SSY model, Jssy becomes simply the J value at the
crack tip. Even the Jigy value for the fracture specimen, the lines shown on Fig. 10 readily illustrate the
technique used to determine Jsgy.

Fig. 11(a)-(d) provides the constraint corrections (LSY — SSY) for the 1(7) SE(B) specimens with
different material properties (n = 5 with E/ay = 800; n= 10 with E/a, = 500; n= 20 with £/g, = 300) and
for varying Weibull moduli, m. The present computations consider values of m= 10, 15, 20, 25 and 30 to
assess the sensitivity of constraint corrections on the specified Weibull modulus. As noted before, these m-
values are consistent with previously reported values for structural steels. Each curve provides pairs of J-
values, Jigy in the SE(B) specimen and Jssy in SSY, that produce the same g,,. Reference lines are shown
which define a constant ratio of “constraint loss”, e.g., Juve = 1.2 x Jy which implies that the SE(B) average
J must be 20% larger than the SSY value to generate the same Weibull stress. For each value of the Weibull
modulus, the SE(B) and SSY curves agree very well early in the loading history while the SE(B) specimen
maintains near SSY conditions across the crack front (recall that computation of o, in the SE(B) specimens
considers the entire crack front). Once near-front stresses deviate from the (plane-strain) SSY levels, the o
curves for the SE(B) specimens fail to increase at the same rate with further loading. These results clearly
illustrate the gradual nature of constraint loss in the deep-notch SE(B) specimens, especially for moderate
to low hardening materials. The Weibull modulus does have an appreciable affect on predictions of con-
straint loss; increasing m values indicate a higher load level at the onset of constraint loss and a reduced rate
of constraint loss under further loading. The larger m values, in effect, assign a greater weight factor to
stresses at locations very near the crack front. The bending field, which impinges on the crack front, affects
the smaller m curves more readily.
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7. Concluding remarks

We have presented a computational framework for brittle fracture which incorporates weakest link
statistics and a micromechanics model reflecting local damage of the material. The approach addresses the
strong effects of constraint variations on (macroscopic) cleavage fracture toughness which also includes
modeling of ductile tearing when cleavage failure is preceded by small amounts of stable crack growth. The
Weibull stress (6,,) emerges as a probabilistic fracture parameter to define conditions leading to (local)
material failure. Unstable crack propagation occurs at a critical value of o, which may be attained prior to
or following some amount of stable, ductile crack extension. When implemented in a finite element code,
the computational model predicts the evolution of Weibull stress with applied load (conveniently measured
by J in the present work) while the crack tip undergoes first blunting and then stable, ductile crack ex-
tension. The SSY analyses under varying levels of T-stress presented in our study provide valuable insight
about the effects of crack-tip constraint on fracture resistance. These SSY results exhibit the essential
features of the micromechanics approach in correlating macroscopic fracture toughness with constraint
variations and ductile tearing. Application of the methodology in the form of a toughness scaling model
provides a simple procedure to correct toughness values for effects of constraint loss in conventional
fracture specimens.

However, because the model also simplifies a seemingly complex array of metallurgical processes and
operative mechanisms at the microlevel, the application of the model in fracture mechanics applications,
particularly in fracture assessments procedures (i.e., predictions of fracture events in large engineering
structures), still remains untested. In particular, robust schemes to calibrate the Weibull parameters (m, a,,)
become a key element to correlate effects of constraint loss for varying crack configurations and loading
modes (tension vs. bending) based upon oy,. Preliminary efforts along these lines have recently been made
by Gao et al., (1998) who introduced a new, improved calibration procedure for the Weibull parameters (m,
g,). Ongoing work is currently underway to extend the model into a full 3-D framework to correlate
through-crack fracture specimens and surface-crack components.
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